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The stochastic quantization scheme is shown not to enforce at finite stochastic time quantization of physical parameters in 
theories with multivalued actions. Unless these parameters are a priori quantized, stochastic averages do not possess an 
equilibrium limit. In particular, the stochastic scheme does not reproduce global anomalies at finite stochastic time. 

Topological quantization of  physical parameters is 
an important nonperturbative phenomenon occurring 
in some interesting models def'med by muitivalued 
actions such as: 

(i) The chiral field model with the Wess-Zumino 
term [1,2] in even (euclidean) space-t ime dimen- 
sions D: 

S[ 1) = SChiralIU ] + i/jl'WZ [U] ,  

Scm=ltul = _~fz f dDx tr [L2(U)] , 

Lu(U ) = u - l a u u  ' 

l"wz [U ] =CD+ 1 / dx D+I fdDx eut...uo.t 
0 

X tr[Lux (Lr) ... LuD÷l(br)] , (1) 

where 

CD+ 1 = -(i/2n)(D+2)/2(D/2)! [(D + 1)!1-1,  

and U= U ( x , x  D+I) i sa  continuation of  U(x) from 
l id  to il D+i, U(x, 0) = U(x), U(x, x D+l) -+ 1 at in- 
finity of  FI D+I. 

(ii) Non-abelian gauge theories with Chern-Simons 
terms [3] in odd D: 

S~ 2) = SyM [A ] + i~ WCh $ [A l ,  

Sy  M = (4rig2)-1 f dOx tr IF2.(A)I, (2) 
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Wchs [AI = fdOx %t...un 

X tr[boAutFu2u3(A ) ... FUD_t uD(A) -- ... 

+ (-- i)DcDAut ... Aun], (2 cont 'd)  

where 

b D -- 2 [((D + I)/2)!(47r) (D+I) /2]- l .  

For a general construction and numerous examples o f  
models with multivalued actions, see ref. [4]. 

Let us recall the reason for quantization of  the pa- 
rameter ~: 

~j=27rrn, m E Z .  (3) 

The configuration spaces o f  the models (1), (2)possess 
a nontrivial topology [ 5 - 7 ] :  

~ o )  = {U(x)l  U: R e ~ SU(n), U(x)~lxl-.** 1), 
ul(c~(1)) = nD+I(SU(n)) = Z (for even D < 2n - 2), 

(4a) 

9 ~  2) = s~/~,  q =gtto~, 

srl = {Au(x)IA u ~lxl--,** - i g - i a  ug, g(x)  e SO(n)}.  

(4b) 

As a result, there exist noncontractible closed contours 

C (~) = (U(x; s)l U(x; O) = U(x; 1) = U(x)) 
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in c~(1) and 

C (2) = {Au(x;s) lAu(x;  1) 

= u - l ( x ) [ A . ( x ;  0 )  - iO ]u(x), u q ) 

in c,/g(2) on which the actions (I), (2) are multivalued 
functionals: 

Fwz[U( ' ;  1)l = PwzIU( ' ;0 ) ]  +N[U},  

WCh s [Au('; 1)] = WCh s [Au(" ; 0)] +N[u] ; 

N[u] = c D f dDx eul ...uo tr[Lut(u) "'" LuD(U)]' (5) 

where N[ "] in (5) denote the corresponding topologi- 
cal charges. Thus, condition (3) is enforced in order 
to get well-defined quantum theories of (1), (2) with- 
in the functional integral formulation [1,3], i.e. to 
get single-valued Boltzmann weights exp(-S(~l'2)). 

Here we shall discuss in some detail the stochastic 
approach [8] to the quantization of theories with 
multivalued actions looking in this context for a mech- 
anism for topological quantization of the relevant pa- 
rameters. 

In shorthand notations, the basic ingredients of 
this approach, the Langevin equations, read: 

~r~O = -6S~/6~o + 77, 

{rt(t, x)n(t', x')) = 26(t - t')6 (D)(x - x') , (6) 

where 

S~[~o( ' ;1 ) l -S~[~o( ' ;O) l=i~N,  N ~ Z ,  (7) 

for every noncontractible closed contour 

C = {~(x; s)l~(x; 0) = ¢(x; 1) = ~(x)) (8) 

in the configuration space c~. In particular, for the 
models (1), (2) one has 

U - 1 3 t U =  - f 2 0 p L u ( U  ) 

- i/j(D + 1)eO+leua . . .uoLu~(U) ... LuD(U ) + rl, 

(r~a(t, x)nb(t  ', x')> = 26ab6(t - t ')6(D)(x - x') , 

~7 = iTa~ a (9) 

(the T a are the hermitian generators of SU(n), 
t r (TaT b) = 6abn), 

atA  = --( I/g2)(V, Fu,(A)) a 

- ½(D + 1)6 D i~euv I ...VD-t 
a 

× tr(TaFvl v2 "'" F~O-2VD-I) + rip ' 

x )nv( t  , x  )) = 26ab6uv6(t - t ')6(D)(x -- x') . b , , 

(10) 

In (10) the gauge-fLxing "drift"-term [9] is suppressed 
since only gauge-invariant functionals ofA u (i.e., func- 
tionals over ~ (2) (4b)) will be considered. Our argu- 
ments below will apply to the formal unregularized 
stochastic scheme. Existing at present invariant regular- 
izations (such as that of ref. [10]) will make the anal- 
ysis of the equilibrium limit of the corresponding 
Fokker-Planck distribution difficult (eqs. (12), (13) 
below). Nevertheless, since the phenomena under con- 
sideration are topological in nature, it is assumed as in 
refs. [1,3] that they are not obscured by regularization 
of short-distance singularities. 

The very simple, but crucial, observation is that un- 
like S~ [~o] (cf. (7)) ~S~/6~o, standing on the RHS of 
(6), (9), (10), are smooth single-valued functionals for 
any ~ and, therefore, the Langevin equations (6), (9), 
(10) yield well-defined (after appropriate regulariza- 
tion) stochastic averages for any ~: 

( ~[~o(O(t, ")])n = f cb71exp ( -  f dt dDx r12) 

X ~[~o(~)(t, ')1 

= fc'/)~o ~r [~o] ~ [~o; t],  (11) 

where ~r is an arbitrary (gauge-invariant) functional of 
the solutions ¢(nO(t, x) to (6), (9), (10) and 9~ [¢; t] is 
the Fokker--Planek distribution: 

7~[¢; t]  = f c ~ n e x p ( -  f d D x d t n 2 )  

X 17 ~t(¢(x) - ~(~)(t, x ) ) .  (12) 
X 

Thus one sees that no topological quantization of 
the parameter ~ is enforced at finite stochastic time t 
by the stochastic scheme for theories with multivalued 
actions. Then the important question arises as to how 
this topological quantization may emerge in terms of 
stochastic averages (11). As we are now going to show, 
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although (11) make sense for any ~, the equilibrium 
limit (t ~ 0o) of(11) exists if and only if ~ is quan- 
tized apriori according to (3). 

Indeed, the equilibrium distribution 5~ [9] = 
limt--,** 5~ [9; t] must satisfy the equation [8] 

[8/8~(x) + 8sfl~,p(x)] ~ [91 = 0 ,  (13) 

whose obvious solution reads: 

:9~[~] = const, e x p ( -  f 8S~/8~). (14) 
C@,~o) 

Here C(~,~o) denotes an open path in the configura- 
tion spaceC~ : 

C(~o,~o ) = {~(x; s) ha(x; 0) = ~o0(x ) - reference point, 

~(x; 1) = ~(x)) ,  

and the functional line integral in (14) is defined as 

1 

f (...)-- f fdO  as o(x; s)(...). 
C(¢,~o) 0 

Standard arguments imply that ~ [9] (14) is a 
smooth path-independent, i.e. single-valued, equilib- 
rium solution 

~P~ [~P] = const, exp{-S~ M ) ,  

and that, accordingly, the equilibrium limit 

lim ( 7 [~o(O(t, ")])n = z ~ - l f  [91 exp{-S~[~o] } 
t ~ -  (15) 

exists, if and only if for every closed contour C (8) in 
9r~: 

fss~/6~o = S~ [9('; 1)1 - S~ [9( ' ;0) 1 = 2rriN, 
c 

N ~ Z .  (16) 

Comparing (16) with (7) one finds that the topological 
quantization of ~ (3) is enforced only after invoking 
the requirement of the existence of the equilibrium 
limit (15). 

Eq. (13) has a very transparent geometrical inter- 
pretation which directly follows from the general 
mathematical theory of models with multivalued ac- 
tions [4]. It may be rewritten in the form 

~ x  Ira] 9~ [91 = o ,  

~x [s~] = 6[6~o(x) + i ~  x [~], 

-~x [91 -= -iSS~/8~(x), (13') 

where c-/) x [_~] is viewed as a functional covariant de- 
rivative with an abelian functional complex gauge po- 
tential ~ x  [9] : 

~x  [U] = 6 [r'wz - iSchirad/6e(x), 
Be(x) =-- U-I(x)6 U(x), 

_~a, lz [A ] = 5 [Wch S --iSyMl/6Aa~(x). 

Then (16) is exactly the condition for global integrabil- 
ity of (13') on the topological nontrivial configuration 
space c-~, i.e. the condition that ~ x  [~0] is globally a 
"pure gauge". A similar interpretation of-~a,u [A] = 
6 WCh s [A]/SAau(x) in a different context has appeared 
in refs. [11,7]. 

The same analysis applies for the SU(2) global 
chiral anomaly in D = 4 [12]: 

det  [--i~TL(Ag)] = (--1) Nf det [--i~'L(A)], 

for Nf = odd number of fermion flavors, where g(x) is 
a homotopically nontrivial SU(2) gauge transformation 
and WL(A) is the chiral Dirac operator. The corre- 
sponding effective action Seff[A ] = SyM [A] - 
Nf In det [-i~L(A)] is multivalued on c~(2) (4b) (cf. 
(7), (16)): 

Seff[Ag ] = Serf[A ] - irtNf . 

Therefore, there is no way to detect the SU(2) global 
anomaly in the stochastic averages at finite t (~iSeff/ 
~iA~ entering the pertinent Langevin equation (6) is 
gauge-covariant, i.e. single-valued). Accordingly, the 
latter does not possess an equilibrium limit. 

Finally, let us add the following remarks. A further 
serious drawback of the stochastic scheme was found 
in ref. [13]. Namely, stochastic quantization of mass- 
less fermions in odd D interacting with (background) 
gauge fields does not reproduce the pertinent parity- 
violating anomalies [14], Since it yields at finite t as 
well as in the equilibrium limit a gauge- and parity- 
covariant induced fermion current [13]. Therefore, 
the stochastic scheme is applicable to massless fermi- 
ons in odd D only in those cases when the correspond- 
ing parity-anomalies can be cancelled by appropriate 
counterterms [15]. 
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Unlike the above, there are no problems for the 
stochastic scheme to correctly reproduce the standard 
(perturbative) anomalies of chiral fermions in even D 
both at finite t * 1 as well as in the equilibrium limit 
[17,18,13]. 

,1 A statement [ 16 ] contradicting the latter result is criti- 
cized in ref. [ 17]. 
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